"Living high-training low" altitude training improves sea level performance in male and female elite runners.
نویسندگان
چکیده
Acclimatization to moderate high altitude accompanied by training at low altitude (living high-training low) has been shown to improve sea level endurance performance in accomplished, but not elite, runners. Whether elite athletes, who may be closer to the maximal structural and functional adaptive capacity of the respiratory (i.e., oxygen transport from environment to mitochondria) system, may achieve similar performance gains is unclear. To answer this question, we studied 14 elite men and 8 elite women before and after 27 days of living at 2,500 m while performing high-intensity training at 1,250 m. The altitude sojourn began 1 wk after the USA Track and Field National Championships, when the athletes were close to their season's fitness peak. Sea level 3,000-m time trial performance was significantly improved by 1.1% (95% confidence limits 0.3-1.9%). One-third of the athletes achieved personal best times for the distance after the altitude training camp. The improvement in running performance was accompanied by a 3% improvement in maximal oxygen uptake (72.1 +/- 1.5 to 74.4 +/- 1.5 ml x kg(-1) x min(-1)). Circulating erythropoietin levels were near double initial sea level values 20 h after ascent (8.5 +/- 0.5 to 16.2 +/- 1.0 IU/ml). Soluble transferrin receptor levels were significantly elevated on the 19th day at altitude, confirming a stimulation of erythropoiesis (2.1 +/- 0.7 to 2.5 +/- 0.6 microg/ml). Hb concentration measured at sea level increased 1 g/dl over the course of the camp (13.3 +/- 0.2 to 14.3 +/- 0.2 g/dl). We conclude that 4 wk of acclimatization to moderate altitude, accompanied by high-intensity training at low altitude, improves sea level endurance performance even in elite runners. Both the mechanism and magnitude of the effect appear similar to that observed in less accomplished runners, even for athletes who may have achieved near maximal oxygen transport capacity for humans.
منابع مشابه
"Living high-training low": effect of moderate-altitude acclimatization with low-altitude training on performance.
The principal objective of this study was to test the hypothesis that acclimatization to moderate altitude (2,500 m) plus training at low altitude (1,250 m), "living high-training low," improves sea-level performance in well-trained runners more than an equivalent sea-level or altitude control. Thirty-nine competitive runners (27 men, 12 women) completed 1) a 2-wk lead-in phase, followed by 2) ...
متن کاملIndividual variation in response to altitude training.
Moderate-altitude living (2,500 m), combined with low-altitude training (1,250 m) (i.e., live high-train low), results in a significantly greater improvement in maximal O2 uptake (V(02)max) and performance over equivalent sea-level training. Although the mean improvement in group response with this "high-low" training model is clear, the individual response displays a wide variability. To deter...
متن کاملInternational SportMed Journal, 2000, Volume 1, Issue 2
Many elite athletes believe that training at altitude improves sea level performance. Yet the scientific evidence, such as it is, would seem to refute this, suggesting that the athlete’s trust may be misplaced. However, these scientific studies do not exclude the possibility that altitude training might produce an effect (<1%) that is too small to be detected by current research methods, but wh...
متن کاملFood and macronutrient intake of elite Ethiopian distance runners
BACKGROUND Explanations for the phenomenal success of East African distance runners include unique dietary practices. The aim of the present study was to assess the food and macronutrient intake of elite Ethiopian distance runners during a period of high intensity exercise training at altitude and prior to major competition. METHODS The dietary intake of 10 highly-trained Ethiopian long dista...
متن کاملDefining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.
Chronic living at altitudes of ∼2,500 m causes consistent hematological acclimatization in most, but not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a given altitude show substantial individual variability. We hypothesized that athletes living at higher altitudes would experience greater improvements in sea level performance, secondary to greater hem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2001